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A B S T R A C T

Early detection is crucial to prevent the progression of Alzheimer’s disease (AD). Thus, specialists can begin
preventive treatment as soon as possible. They demand fast and precise assessment in the diagnosis of AD in the
earliest and hardest to detect stages. The main objective of this work is to develop a system that automatically
detects the presence of the disease in sagittal magnetic resonance images (MRI), which are not generally used.
Sagittal MRIs from ADNI and OASIS data sets were employed. Experiments were conducted using Transfer
Learning (TL) techniques in order to achieve more accurate results. There are two main conclusions to be
drawn from this work: first, the damages related to AD and its stages can be distinguished in sagittal MRI and,
second, the results obtained using DL models with sagittal MRIs are similar to the state-of-the-art, which uses
the horizontal-plane MRI. Although sagittal-plane MRIs are not commonly used, this work proved that they
were, at least, as effective as MRI from other planes at identifying AD in early stages. This could pave the way
for further research. Finally, one should bear in mind that in certain fields, obtaining the examples for a data
set can be very expensive. This study proved that DL models could be built in these fields, whereas TL is an
essential tool for completing the task with fewer examples.

1. Introduction

One of the main consequences of the progressive aging of the
population is a higher occurrence of age-related neurodegenerative
diseases. Among these diseases, Alzheimer’s disease (AD) stands out
with a prevalence of 5.5% in Europe in 2016 [1] and 10% in the United
States of America in 2019 [2].

The main challenge faced by the AD researchers today is to perform
a pre mortem diagnosis that leaves no room for doubt. Many things
are unknown about this disease today besides the symptoms of mood
swings and some obvious changes in the morphology of the cerebral
cortex [3], which are not related to a normal aging process [4]. Al-
though the mechanisms of AD have not yet been unveiled, most experts
agree that the disease seems to be the result of a combination of genetic
and environmental factors. For example, some studies have related it
to pathogens causing periodontitis [5] or to herpes simplex virus type
1 [6]. It is believed that it is an age-related but not an age-dependent
disease [7] and that there is sexual dimorphism in the presence of the
disease [8]. Even today, the disease is the subject of in-depth studies
due to its impact on society and the lack of agreement on its origin.
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Nowadays, very few things are clear about this neurodegenerative
disease but it has no cure apart from a series of palliative treatments
to slow down its progression. Therefore, early detection of the disease
is a key element for improving the quality of life of affected patients
and their families. To make this diagnosis, cognitive, psychological or
clinical tests are used. In clinical trials, among the most used, are the
brain images obtained by magnetic resonance imaging (MRI). This is
due to the fact that these images hold a high relationship with the
brain topology and they show the alterations in the brain morphology.
Being able to see the alterations in brain morphology is the main reason
why MRI images are used. In the MRI images, the regions with the
cells affected by the degeneration of the disease take very low-intensity
values, so they appear darker with respect to healthy parts (Fig. 1).

Focusing on techniques to support the diagnostics of AD based on
images, most of them are related to Computer Vision [9], although
Machine Learning [10] techniques have recently been introduced. For
example, Stonnington et al. [11] used regression models with likelihood
functions for screening and tracking the disease, whereas Li et al. [12]
employed Vector Support Machines (SVM) for diagnostic support.
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Fig. 1. Examples of the different types of MRI according to the acquisition plan. They
display different changes in the morphology of the brain organ depending on the type.

Recently, advances have been introduced in Machine Learning such
as Deep Learning (DL) techniques [13]. Liu et al. [14] proposed the
use, in their medical application, of autoencoders with Softmax output
layers to avoid bottleneck during diagnostic support. The utilization of
convolutional networks is widespread, as in the works conducted by
Hosseini et al. [15], because they are the most adapted type for the
treatment of images and signals. Zheng et al. [16] proposed the use
of restricted Boltzmann machines as a preliminary stage to a classic
Machine Learning classifier to improve its results.

Other proposals, such as that of Suk et al. [17], used volumes of
gray matter (GM volumes) instead of MRI images for the diagnosis of
AD, and thus were able to obtain information from a large part of the
brain despite the computational cost. In this work and in some other
proposals, they extracted information from various medical imaging
techniques such as combined information from the horizontal MRI
images and their corresponding positron-emission tomography (PET)
images.

The use of DL was also combined with MRI images for other appli-
cations in the field of neuroscience, not just the diagnosis of AD as in
Suk’s work [18], in which a method was proposed for the identification
of activity changes in brain regions during rest.

All of these examples employed their own complex architectures
with horizontal MRI images or volumes. In some cases, horizontal MRI
images were combined with other types of images such as sagittal
MRI images. Unlike the previously described works, the present work
proposes the exclusive use of sagittal images along with fine-tuning
of general-purpose architectures into images. This would allow exper-
iments to be carried out in a more exhaustive way, because it has
information about the brain at different vertical levels, and at a lower
computational cost, since there would be no need to process a great
amount of images. This would also make possible to extract information
from other regions of the brain.

As seen in some examples listed above, DL allows characterizing AD
in MRI images through the creation of computational models composed
of multiple processing layers. Despite being an approximation of Ma-
chine Learning, DL automatically extracts its own information from the
input images [19], avoiding the subjectivity of the expert who labels
the information, as in a classic Machine Learning model.

It is important to consider the correct use of DL in the solution of
the problem. In the ADNI [20] data set, Basaia et al. [21] employed
Data Augmentation to overcome the scarce number of data. This could
be risky because the transformations of deformation and crop may not
represent real cases or errors and they can be multiplied in case samples
were erroneously labeled. In the OASIS [22] data set, the use of a small
and efficient network by Islam et al. [23] stands out. Despite employing
Data Augmentation, the utilization of the Hold-Out validation strategy
in this work may not be a very comprehensive measurement of the
model’s goodness of fit due to the large imbalance present between
the classes of the data set and its small size. Removing 20% of the
training data involves the risk of eliminating underrepresented classes
from the model training stage. Usually, other works obtained their
performance metrics by contrasting the values of each class against the

other. Therefore, they treated problems as if they were independent
binary problems. For example, Yue et al. [24] addressed the problem
as three separate binary problems, one for each class. The results of
the prediction were obtained for each class in the presence of each of
the remaining classes. Therefore, biased values were obtained, since the
values of these binary comparisons were not achieved in the presence
of the noise from the other classes.

In conclusion, the objective of this work is the development of a DL
application that assesses the diagnosis of AD in sagittal MRI images.
Therefore, it is expected to achieve, as main results: a valid model
developed with DL to perform the diagnosis with sagittal MRIs; to prove
that sagittal images can be used in order to identify AD, without the
help of any other kind of acquisition plane; and to prove that Transfer
Learning is crucial for training models with few data.

2. Materials and methods

2.1. Workflow

The schema shown in Fig. 2 illustrates the main workflow of this
study. It is similar to the classical pipeline to process any kind of signal
but adapted to include Transfer Learning (TL) [25]. Patients’ MRI scans
were fed to a ResNet artificial neural network (ANN) [26] in order to
extract new feature vectors and patients’ sex and age are concatenated
to them. The obtained vectors contained 100,352 numerical values
extracted from each MRI scan. The extracted measures represent those
different measures that ResNet model considers relevant for learning.
It is easier for the ANN to learn some important features from an
image instead of learning the complete image and the spatial relation-
ships between pixels. The full set of vectors was divided into training
and testing data. The training data were used for training an SVM
model [27] with Radial Basis Function (RBF) kernel. The testing data
were employed for evaluating trained SVM model goodness in order
to improve it. The main reason to use TL is the small size that MRI
data sets have. In this way, the chosen model was trained for another
task with a huge amount of images, such as different types of medical
images. Therefore, fewer weights were required to be tuned, which
implies that less new data were needed to adapt the model to the
current problem. Consequently, using ANN trained in the previous tasks
required less amount of data and, collaterally, the experimentation was
faster.

Going along the workflow, first, the information about the patients
was loaded, that is their age, sex, and the patients’ MRI scans scaled to
224 × 224 pixels. This last requirement was set by the trained ANN
used in this work which is known as ResNet [26]. Second, all MRI
scans were fed to the ResNet ANN without the last three layers in
order to automatically extract feature vectors. That feature vector was
concatenated to their respective sex and age values. Finally, in the last
step, the data set was split into training and testing data. Training data
were used to develop an SVM model [27] while testing data were used
to measure the behavior of the model with previously unseen data.

2.2. Data sets

This work made use of two sets of images known as OASIS and
ADNI. Both sets were properly labeled collections of MRI images, which
are two of the most common in the state-of-the-art.

2.2.1. OASIS
The OASIS data set [22] is open and presents two collections:

OASIS-Cross-sectional, which contains images of sagittal MRI, and
OASIS-Longitudinal, which is formed by longitudinal slices. Both col-
lections correspond to the acquisition of 256 × 256 pixel images from
different patients. The objective of this work was the OASIS-Cross-
sectional collection because it led to the resolution of the problem
with 436 sagittal images. Out of these, 2 were moderate AD cases, 28
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Fig. 2. The workflow diagram of the study. Patients’ MRI scans were fed to a ResNet ANN [26] in order to extract new features vectors and sex and age are concatenated to
them. These vectors are separated into training data and test data. Test data is used for training an SVM model [27]. Test data is used for evaluating trained SVM model goodness
in order to improve it.

Table 1
Example of confusion matrix for binary problems.

Predicted

True False

Actual True True Positives (TP) False Negatives (FN)
False False Positives (FP) True Negatives (TN)

are mild dementia, 70 very mild dementia and 316 were cognitively
normal. This implies a strong imbalance in favor of cognitively normal
cases. The images were obtained from 168 male patients and 268
female patients aged between 18 and 98 years.

2.2.2. ADNI
The ADNI data set [20] contains several collections of MRI images.

The MP-RAGE REPEAT collection was used in this work. This collection
consists of 1743 volumes from which the cut 88 of the sagittal plane
was extracted, corresponding with a 256 × 256 pixel image that is the
central cut. These images were divided into 297 AD cases, 921 mild
cognitive dementia, and 525 cognitively normal cases. This implies an
imbalance in favor of the AD class. All images were obtained from 1055
male patients and 688 female patients aged between 55 and 94 years.

2.3. Proposed method

The proposed model is shown in Fig. 3. This model employed the
first 47 layers of a ResNet ANN [26] trained with ImageNet data set
to extract the features. ResNet or Residual Neural Network is an ANN
based on Residual blocks for avoiding gradient problems that deep
ANNs have. Without gradient problems, it is possible to train deeper
ANNs.

The output of the last layer of the ResNet was concatenated to the
patient’s sex and age and then it was classified by a Support Vector
Machine (SVM) [27] specifically trained for the problem. The reason
why this model composition strategy was chosen is TL [25] technique.
Therefore, the speed of experimentation can be accelerated by adapting
successful models to related problems.

2.4. Performance measures

In order to show the goodness-of-fit of the proposed model, a bunch
of metrics defined with confusion matrix were used (see Table 1).
More specifically, in this work Accuracy (1), Precision (2), Recall (3),
Specificity (4) and F1 score (5) were chosen because they are the most
commonly used in the bioinformatics literature in order to increase the
possibilities to compare the results like in the studies [28] and [29].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(1)

Fig. 3. Proposed model schema. Once ResNet ANN [26] extracts feature vectors from
MRI scans, sex and age are concatenated in order to add more features. These extended
features vectors are fed to the SVM model [27], which determines whether there is
any stage of AD or the patient is cognitively normal.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(4)

𝐹1 = 2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(5)

3. Results

3.1. Imbalance

Due to the imbalance of the data sets, their empirical searches
for each class were performed. These searches allowed for preventing
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overfitting of the model constructed for each data set and memorizing
the most represented class, instead of the least represented one. In these
searches, the way the predictions for each class changed was controlled
as the weights were modified, especially the interest classes. Therefore,
the weight adjustment was balanced to have a value proportional to
the number of elements in each class (6). That is, the least represented
class will be given the greatest weight or priority. In this way, when
multiplying this weight by the number of elements in each class, the
same value will always be given.

𝑤𝑒𝑖𝑔ℎ𝑡(𝑥) =
training examples

classes × training examples class 𝑥
(6)

For example, taking a data set in which there are 8 elements of
class 1 and 2 of class 0, class 0 would have the weight 2.5 and class 1
would have the weight 0.625. Hence, multiplying the weight of each
class by the number of elements in that same class, the result would be
5. Which, multiplied by the number of classes, would equal the number
of elements in the data set (balanced weights).

3.2. OASIS

For the OASIS data set, a Leave-One-Out evaluation [30] was per-
formed with 1% of the training data used as the validation set. During
the training Early Stopping [31] was performed in order to prevent
overfitting. Hyperparameter optimization was carried out by random
search.

As shown in Table 2, the results, with and without considering sex
and age, for the most advanced stages of AD were not detected (recall
equals 0%). This is due to the few cases contained in the data set for
these stages (2 cases for moderate AD and 28 for mild dementia) out of
the 416 available cases. Performing Data Augmentation, like in [23],
would increase these cases and solve imbalance, but the new data
remained dependent on the original data. Therefore, the model may not
be learning new phenotypic manifestations that represent those stages
and keep learning the same cases. In spite of this, the proposed model
trained with this data set showed a great capacity to diagnose AD at
the earliest stage. In [23], the authors proposed a model which was
not as good at the earliest stage, since they detected fewer positive
cases (recall equals 50%). As this is a medical problem, in which it is
important to find positive cases as soon as possible, Data Augmentation
was employed to learn how to address the diagnosis in later stages in
a more precise way, at the cost of detecting fewer cases at the earliest
stage.

Results when considering sex and age were compared with the
results obtained from pure MRI images, showing a small improvement,
especially, for the first two classes. The computational cost of obtaining
the sex and age variables is low and does not contain noise, as they are
demographic variables. Therefore, more precise results, with almost no
computational cost or noise, may be obtained. Both when considering
and not considering the sex and age variables, precision and recall
values of 0% were obtained for the most advanced stages. This is due
to the fact that there were only 2 examples of one class and 28 of the
other; these are very few cases compared to the 386 of the remaining
two. Because of not using Data Augmentation, these results cannot be
improved. The main reason for not using this technique is that there is
no guarantee that the synthetic data would be cataloged in the same
way as the original data. Moreover, these new data can distort the
learning process and make the model process the cases as real even
though they are impossible to find in nature.

An example of a learning curve based on the accuracy metric can be
seen in Fig. 4. One can see that the model maintains a high percentage
of accuracy for testing as the training examples increase. This shows
that the data set covers a wide variety of cases despite its small size.

Fig. 4. OASIS learning curve with accuracy metric with subsets containing from 10%
to 70% of data.

3.3. ADNI

For the ADNI data set, 50 repetitions of Hold-Out evaluation [32]
were performed with 80% of the entire set used for training, 20% for
testing and 1% of the training data used as the validation set. Like
the OASIS data set, during the training, Early Stopping [31] was per-
formed in order to prevent overfitting. Hyperparameter optimization
was carried out by random search. The obtained results are shown in
Table 3.

With this data set, the results were better than in the previous data
set. This is due to the smaller imbalance between the stages and the
larger number of data. Therefore, there were more data, representing
a greater phenotypic variety, for each stage. In spite of this, the AD
stage was the least correctly detected (recall equals 30.62%) due to the
fact that there were fewer example cases. As in the previous case, this
model is satisfactory in addressing the diagnosis at the earliest stages.

[15] presented excellent results, both in the detection of healthy
cases and in early stages with very efficient models and without the
risks of Data Augmentation. In spite of this, the size of the considered
population is very small (210 samples), with people aged around
75 years old for each class, where more men than women are sampled.
As shown above, age and sex influence the manifestation of AD, where
males being more affected, whereas elderly people have the greatest
manifestations, so their results may be biased. Compared to the results
of the model proposed in this paper, healthy cases are better detected
than other cases. Bearing in mind that the main objective is the diag-
nosis, it is preferable that cases be better detected in the presence of
AD. There are recent approaches such as [33], but most of their results
cannot be compared with those proposed as they performed a pair-
wise evaluation of classes. There, the obtained results were dependent
on the pairs that were compared, without an overall metric per class.
Others, however, used other ADNI data sets that were submitted for a
challenge, such as [34]. This data set contains more classes than the
usual data set. Therefore, it would not be correct to make a direct
comparison with these methods, as the exact equivalence of the classes
in the two sets is not known.

The results obtained when considering the demographic variables
are worse than not taking them into account, in all cases except for
recall in the earliest stage of Alzheimer’s. This means that although the
detection of the other stages is worse, the stage of interest is detected
better. Thus, a healthy case is more likely to be identified with a sick
case. As this is a medical care project, this is preferable to the opposite.
Therefore, cases should rather be detected as early as possible, so that
preventive treatment can be started as soon as possible.

The accuracy-based learning curve for ADNI (Fig. 5) shows an
evolution of accuracy for tests with a decreasing trend. This means that
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Table 2
Best results with the OASIS data set.

Class Accuracy Precision Recall Specificity F1

[23] (Horizontal MRI)

Cognitively Normal – 99.00% 99.00% – 99.00%
Very Mild Dementia – 75.00% 50.00% – 60.00%
Mild Dementia – 63.00% 71.00% – 67.00%
Moderate AD – 33.00% 50.00% – 40.00%

Average – 67.50% 67.50% – 66.50%

Proposed Model without considering sex and age (Sagittal MRI)

Cognitively Normal 79.36% 89.94% 82.44% 69.00% 86.02%
Very Mild Dementia 74.31% 33.06% 58.57% 77.32% 42.27%
Mild Dementia 92.66% 0.00% 0.00% 99.02% 0.00%
Moderate AD 99.54% 0.00% 0.00% 100.00% 0.00%

Average 86.47% 30.75% 35.25% 86.34% 32.07%

Proposed Model (Sagittal MRI)

Cognitively Normal 80.05% 92.54% 81.25% 78.00% 86.53%
Very Mild Dementia 75.00% 35.77% 70.00% 75.96% 47.34%
Mild Dementia 92.66% 0.00% 0.00% 99.02% 0.00%
Moderate AD 99.54% 0.00% 0.00% 100.00% 0.00%

Average 86.81% 32.08% 37.81% 88.25% 33.47%

Comparison of the sagittal plane (436 cases) against the horizontal plane (436 cases + data augmentation cases). Model compared against the proposed model
may be learning non-real cases because of the artificially created cases.

Table 3
Best results with the ADNI data set.

Class Accuracy Precision Recall Specificity F1

[15] (Horizontal MRI)

Cognitively Normal – 100.00% 100.00% – 100.00%
Mild Cognitive Dementia – 60.00% 80.00% – 69.00%
AD – 70.00% 47.00% – 56.00%

Average – 76.67% 75.67% – 75.00%

Proposed Model without considering sex and age (Sagittal MRI)

Cognitively Normal 78.25% 64.44% 59.80% 86.05% 62.03%
Mild Cognitive Dementia 71.51% 69.02% 84.32% 56.95% 75.91%
AD 86.40% 73.42% 31.88% 97.62% 44.45%

Average 78.72% 68.96% 58.66% 80.21% 60.79%

Proposed Model (Sagittal MRI)

Cognitively Normal 78.36% 63.69% 59.60% 85.97% 61.58%
Mild Cognitive Dementia 71.50% 69.00% 84.61% 56.50% 76.01%
AD 86.05% 73.93% 30.62% 97.72% 43.31%

Average 78.64% 68.87% 58.28% 80.06% 60.30%

Comparison of the sagittal plane (1743 cases) against the horizontal plane (210 cases). Model compared against the proposed model needs to learn fewer cases,
having better results but being more overfit.

Fig. 5. ADNI learning curve with accuracy metric with subsets containing from 10%
to 70% of data.

the data set may not have enough representative cases from each stage
for all the possible cases. In contrast to the curve for OASIS, it may
be due to having more examples, so there may be more examples that
present noise. It may also be due to the fact that ADNI considers fewer
stages than OASIS, so there may be overlapping cases that should be
considered from different stages. This affects the learning process in
the model.

4. Discussion

This paper proposes a DL model for the identification of Alzheimer’s
disease in sagittal MRI images. The extracted data come from two
sets of reference data. An initial parameterization was defined in the
weights of the classes to overcome the imbalance of data. An evaluation
strategy and metrics were established to determine the goodness-of-
fit of the proposed model. Therefore, the proposed algorithm presents
satisfactory results in both sets with sagittal images.

As the main conclusion, for both data sets, the identification of AD
in sagittal MRI images is approachable through DL techniques. These
results are comparable to those proposed by horizontal cuts in the
literature. Despite the high imbalance of both data sets and the small
size of the OASIS set, the proposed model presents satisfactory results
for its simplicity compared to those found in the state-of-the-art. This is
due to the empirical study of the weights of the classes during training.
Therefore, the model knows that the class with the most weight is the
one of the greatest interest and has to learn it with the highest priority.
The ability to transfer a model from one problem to another opens up
the possibility of addressing this problem through TL [25]. Adapting
networks that were designed for other problems to a given problem
saves time in analysis and network design. By being trained with many
different data, ANN does not need many new data to be adapted to
the new problem. The fewer the data, the faster the training process
is, which speeds up the experimentation. In addition, given that they
were trained with different types of images, the greater the capacity for
generalization is greater.

From the DL point of view, the overfitting of the data sets and the
amount of elements of each class are important aspects. Techniques
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such as Early Stopping [31] are of great help for this study along with
weight adjustment.

According to the related work and the results obtained, it is impor-
tant to choose a training strategy for the appropriate model. Therefore,
the model can cover as many cases as possible with as little training
as possible. Adequate model depth is also important, which should be
as small as possible. Otherwise, the greater the depth, the more cases
the model memorizes. The higher the number of cases the model has
learned, the more overfitted it will be. To summarize, the results of the
system will be worse when faced with new data.

In both data sets, the proposed model detects better cognitively
normal cases and early stages of the disease. This is preferable to the
opposite since in the final stage (AD) the presence of the disease is
very clear. This model was designed to assist in the early diagnosis
of the disease. Therefore, routines and treatments can be started from
the earliest stages to slow the progression of AD and prevent it from
reaching other later stages.

From the experience of the authors in the field of AD, the sagittal
plane also shows typical deformations of the disease. This paves the
way for experimentation. New characteristics of AD can be found in
other regions. These new characteristics can make diagnosis a more
accurate process.

5. Conclusion

This study proposes a method of detection of AD using DL tech-
niques and sagittal MRI images. The TL [25] technique was used,
using the ANN ResNet [26] feature extractor with the SVM classi-
fier [27]. The model was tested in two sets of reference data, proving
its goodness-of-fit by means of previously agreed evaluation strategies
and metrics.

The experimental results show that the model is satisfactory com-
pared to previous works with the classical horizontal plane MRI, espe-
cially when detecting the initial stages of the AD. These are the most
difficult stages to detect, due to the low phenotypic manifestation, and
more importantly, to the greater efficacy of the therapy in early stages.
This proves that the problem can be approached from the sagittal plane,
paving the way for investigation.

TL allows experiments with little data as well as Data Augmentation.
Unlike this technique, with the use of TL, there is no risk of generating
cases that do not come close to reality or that replicate labeling errors.
In addition, using pre-trained models that require fewer data makes
processing a task faster, accelerating the experiment design.

In the future, efforts will be made to improve these results by
combining information from sagittal MRI volumes. Thereby, sagittal
information is available for the entire brain, improving predictions. It is
even possible to combine information from other less common planes,
such as the frontal plane, along with the sagittal plane, obtaining
information from other, less studied, angles. Future work will also focus
on improving the model for recording brain regions affected by the
disease. Therefore, it may be possible to predict which parts would be
affected earlier in the brain and at earlier stages.
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Supplementary material

Source code can be found at https://github.com/TheMVS/DL_AD_
mri_sex_age_stages and a Docker image is available at https://hub.
docker.com/r/themvs/dl_ad_mri_sex_age_stages.

References

[1] H. Niu, I. Álvarez-Álvarez, F. Guillén-Grima, I. Aguinaga-Ontoso, Prevalence and
incidence of Alzheimer’s disease in Europe: A meta-analysis, Neurología (Engl.
Ed.) 32 (8) (2017) 523–532.

[2] J. Gaugler, B. James, T. Johnson, A. Marin, J. Weuve, 2019 Alzheimer’s disease
facts and figures, Alzheimers Dementia 15 (3) (2019) 321–387.

[3] A. Alzheimer, About a peculiar disease of the cerebral cortex, Alzheimer Dis.
Assoc. Disord. 1 (3) (1987) 8.

[4] A. Alzheimer, H. Förstl, R. Levy, On certain peculiar diseases of old age, Hist.
Psychiatry 2 (5) (1991) 71–73.

[5] S.S. Dominy, C. Lynch, F. Ermini, M. Benedyk, A. Marczyk, A. Konradi, M.
Nguyen, U. Haditsch, D. Raha, C. Griffin, et al., Porphyromonas gingivalis in
Alzheimer’s disease brains: Evidence for disease causation and treatment with
small-molecule inhibitors, Sci. Adv. 5 (1) (2019) eaau3333.

[6] R. Itzhaki, Herpes simplex virus type 1, apolipoprotein E and Alzheimer’s disease,
Herpes J. IHMF 11 (2004) 77A–82A.

[7] H. Braak, E. Braak, Frequency of stages of Alzheimer-related lesions in different
age categories, Neurobiol. Aging 18 (4) (1997) 351–357.

[8] D.W. Fisher, D.A. Bennett, H. Dong, Sexual dimorphism in predisposition to
Alzheimer’s disease, Neurobiol. Aging 70 (2018) 308–324.

[9] R. Klette, Concise Computer Vision, Springer, 233 Spring Street, New York, NY
10013, USA, 2014.

[10] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 233 Spring
Street, New York, NY 10013, USA, 2006.

[11] C.M. Stonnington, C. Chu, S. Klöppel, C.R. Jack Jr., J. Ashburner, R.S. Frack-
owiak, A.D.N. Initiative, et al., Predicting clinical scores from magnetic resonance
scans in Alzheimer’s disease, Neuroimage 51 (4) (2010) 1405–1413.

[12] S. Li, F. Shi, F. Pu, X. Li, T. Jiang, S. Xie, Y. Wang, Hippocampal shape analysis
of Alzheimer disease based on machine learning methods, Am. J. Neuroradiol.
28 (7) (2007) 1339–1345.

[13] S. Vieira, W.H. Pinaya, A. Mechelli, Using deep learning to investigate the
neuroimaging correlates of psychiatric and neurological disorders: Methods and
applications, Neurosci. Biobehav. Rev. 74 (2017) 58–75.

[14] S. Liu, S. Liu, W. Cai, H. Che, S. Pujol, R. Kikinis, D. Feng, M.J. Fulham, et al.,
Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s
disease, IEEE Trans. Biomed. Eng. 62 (4) (2014) 1132–1140.

[15] E. Hosseini-Asl, R. Keynton, A. El-Baz, Alzheimer’s disease diagnostics by
adaptation of 3D convolutional network, in: 2016 IEEE International Conference
on Image Processing, ICIP, IEEE, 2016, pp. 126–130.

[16] X. Zheng, J. Shi, Q. Zhang, S. Ying, Y. Li, Improving MRI-based diagnosis of
Alzheimer’s disease via an ensemble privileged information learning algorithm,
in: 2017 IEEE 14th International Symposium on Biomedical Imaging, ISBI 2017,
IEEE, 2017, pp. 456–459.

[17] H.-I. Suk, S.-W. Lee, D. Shen, A.D.N. Initiative, et al., Hierarchical feature
representation and multimodal fusion with deep learning for AD/MCI diagnosis,
Neuroimage 101 (2014) 569–582.

[18] H.-I. Suk, C.-Y. Wee, S.-W. Lee, D. Shen, State-space model with deep learning
for functional dynamics estimation in resting-state fMRI, Neuroimage 129 (2016)
292–307.

[19] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436.
[20] ADNI|Alzheimer’s Disease Neuroimaging Initiative, 2019, http://adni.loni.usc.

edu, (Online; Accessed 18 July 2019).
[21] S. Basaia, F. Agosta, L. Wagner, E. Canu, G. Magnani, R. Santangelo, M. Filippi,

A.D.N. Initiative, et al., Automated classification of Alzheimer’s disease and mild
cognitive impairment using a single MRI and deep neural networks, Neuroimage
Clin. 21 (2019) 101645.

https://github.com/TheMVS/DL_AD_mri_sex_age_stages
https://github.com/TheMVS/DL_AD_mri_sex_age_stages
https://github.com/TheMVS/DL_AD_mri_sex_age_stages
https://hub.docker.com/r/themvs/dl_ad_mri_sex_age_stages
https://hub.docker.com/r/themvs/dl_ad_mri_sex_age_stages
https://hub.docker.com/r/themvs/dl_ad_mri_sex_age_stages
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb1
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb1
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb1
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb1
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb1
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb2
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb2
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb2
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb3
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb3
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb3
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb4
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb4
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb4
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb5
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb5
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb5
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb5
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb5
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb5
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb5
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb6
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb6
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb6
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb7
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb7
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb7
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb8
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb8
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb8
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb9
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb9
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb9
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb10
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb10
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb10
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb11
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb11
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb11
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb11
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb11
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb12
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb12
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb12
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb12
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb12
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb13
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb13
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb13
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb13
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb13
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb14
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb14
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb14
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb14
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb14
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb15
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb15
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb15
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb15
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb15
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb16
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb16
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb16
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb16
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb16
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb16
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb16
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb17
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb17
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb17
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb17
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb17
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb18
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb18
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb18
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb18
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb18
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb19
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb21
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb21
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb21
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb21
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb21
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb21
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb21


Computers in Biology and Medicine 120 (2020) 103764

7

A. Puente-Castro et al.

[22] OASIS brains - open access series of imaging studies, 2019, http://www.oasis-
brains.org, (Online; Accessed 18 July 2019).

[23] J. Islam, Y. Zhang, Early diagnosis of Alzheimer’s disease: A neuroimaging study
with deep learning architectures, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2018, pp. 1881–1883.

[24] L. Yue, X. Gong, K. Chen, M. Mao, J. Li, A.K. Nandi, M. Li, Auto-detection
of Alzheimer’s disease using deep convolutional neural networks, in: 2018 14th
International Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery, ICNC-FSKD, IEEE, 2018, pp. 228–234.

[25] S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Trans. Knowl. Data Eng.
22 (10) (2009) 1345–1359.

[26] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[27] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995)
273–297.

[28] Y.-Y. Ou, et al., Prediction of FAD binding sites in electron transport proteins
according to efficient radial basis function networks and significant amino acid
pairs, BMC Bioinform. 17 (1) (2016) 298.

[29] N.-Q.-K. Le, Q.-T. Ho, Y.-Y. Ou, Incorporating deep learning with convolutional
neural networks and position specific scoring matrices for identifying electron
transport proteins, J. Comput. Chem. 38 (23) (2017) 2000–2006.

[30] T. Evgeniou, M. Pontil, A. Elisseeff, Leave one out error, stability, and gen-
eralization of voting combinations of classifiers, Mach. Learn. 55 (1) (2004)
71–97.

[31] L. Prechelt, Early stopping-but when? in: Neural Networks: Tricks of the Trade,
Springer, 1998, pp. 55–69.

[32] C. Sammut, G.I. Webb (Eds.), Holdout evaluation, in: Encyclopedia of Machine
Learning, Springer US, Boston, MA, 2010, pp. 506–507, http://dx.doi.org/10.
1007/978-0-387-30164-8_369.

[33] J. Shi, X. Zheng, Y. Li, Q. Zhang, S. Ying, Multimodal neuroimaging feature
learning with multimodal stacked deep polynomial networks for diagnosis of
Alzheimer’s disease, IEEE J. Biomed. Health Inform. 22 (1) (2017) 173–183.

[34] N. Amoroso, D. Diacono, A. Fanizzi, M. La Rocca, A. Monaco, A. Lombardi,
C. Guaragnella, R. Bellotti, S. Tangaro, A.D.N. Initiative, et al., Deep learning
reveals alzheimer’s disease onset in MCI subjects: Results from an international
challenge, J. Neurosci. Methods 302 (2018) 3–9.

http://www.oasis-brains.org
http://www.oasis-brains.org
http://www.oasis-brains.org
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb24
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb24
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb24
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb24
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb24
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb24
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb24
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb25
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb25
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb25
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb27
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb27
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb27
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb28
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb28
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb28
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb28
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb28
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb29
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb29
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb29
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb29
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb29
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb30
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb30
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb30
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb30
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb30
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb31
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb31
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb31
http://dx.doi.org/10.1007/978-0-387-30164-8_369
http://dx.doi.org/10.1007/978-0-387-30164-8_369
http://dx.doi.org/10.1007/978-0-387-30164-8_369
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb33
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb33
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb33
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb33
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb33
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb34
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb34
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb34
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb34
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb34
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb34
http://refhub.elsevier.com/S0010-4825(20)30138-4/sb34

	Automatic assessment of Alzheimer's disease diagnosis based on deep learning techniques
	Introduction
	Materials and methods
	Workflow
	Data sets
	OASIS
	ADNI

	Proposed method
	Performance measures

	Results
	Imbalance
	OASIS
	ADNI

	Discussion
	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix. Supplementary Material
	References


